Разнообразие химических элементов во Вселенной

Современная таблица Менделеева содержит 118 химических элементов. Согласно истории Вселенной, после Большого взрыва образовались только четыре элемента: водород, гелий и малое вкрапление лития и бериллия, а также один из изотопов водорода — дейтерий. Вселенной понадобилось почти 13,8 миллиардов лет, чтобы прийти к современному составу. Как получились более тяжëлые элементы?

Часть элементов образуется в процессе эволюции звёзд. Выделение энергии в звезде осуществляется за счёт протекания термоядерных реакций, при которых лёгкие атомные ядра объединяются в более тяжëлые. Здесь есть зависимость от массы, например, в звезде средней массы (такой как Солнце) на протяжении нескольких миллиардов лет будут идти реакции превращения водорода в гелий, после чего часть гелия идёт на синтез кислорода и углерода, но дальнейшие реакции происходить не будут. Более массивные звёзды способны образовать в своих недрах неон, магний, кремний, серу, никель, железо. Однако в звёздах невозможно образование элементов тяжелее железа, так как такие реакции требуют дополнительной энергии.

Таблица Менделеева с указанием способа формирования элементов
Таблица Менделеева с указанием способа формирования элементов

Существуют элементы с атомным номером больше 38, такие как вольфрам, ртуть, свинец, которые образовались в звёздах с массой до трёх масс Солнца. Однако это не термоядерные реакции, которые поддерживают тепловыделение. При высокой температуре внутри звезды ядро атома захватывает нейтрон. Затем в ядре происходит бета-распад, при этом образуется протон, и атомный номер ядра возрастает. Это так называемый s-процесс (от английского slow), который не основной в звезде, скорее протекает как побочный эффект звёздной эволюции.

Какие ещё высокоэнергетические процессы происходят во Вселенной? Например, взрыв сверхновой, при котором за несколько месяцев выделяется энергия, которая выделилась бы на Солнце за 30 миллиардов лет (если бы оно столько существовало). Взрыв сверхновой — это конец жизни звезды, и в его процессе в окружающее пространство выбрасываются элементы, которые синтезировались в звезде. Сверхновая I типа — это взрыв белого карлика, который входит в двойную систему, сверхновая II типа — это взрыв массивной звезды. В первом случае образуются элементы с атомным номером 14-30, а при взрыве сверхновой II-го типа образуется множество элементов, вплоть до циркония с атомным номером 40.

Более тяжёлые элементы образуются в процессе слияния двух нейтронных звёзд. Этот процесс называют «килоновой». При слиянии вещество нагревается до миллиардов градусов, и при этом образуются элементы вплоть до плутония. Каждое подобное событие рождает огромное количество золота и платины, примерно 200 и 500 масс Земли, а также других благородных и радиоактивных металлов. Да, ваши золотые украшения образовались при слиянии нейтронных звëзд.

Химический состав Солнечной Системы
Химический состав Солнечной Системы, по оси y – относительное содержание элементов в логарифмическом масштабе, по оси x – атомный номер, содержание кремния принято равным миллиону.

Существуют ещё так называемые реакции скалывания, в которых образуется литий, бериллий и бор. Это расщепление более тяжёлых элементов (кислород, азот, углерод), которые подвергаются воздействию высокоэнергетических заряженных частиц, например, протонов. Когда частица сталкивается с тяжёлым ядром, она выбивает из него ядро лёгкого элемента. Такие реакции происходят во внешних частях звёзд на раннем этапе эволюции, в верхней атмосфере Земли и на её поверхности, а также в межзвёздной среде.

Все элементы тяжелее плутония синтезировал человек на ускорителях частиц. Они радиоактивны и нестабильны. Часть этих элементов открыли на российском ускорителе Объединенного института ядерных исследований.

Всего на данный момент только 2% изначального водорода и гелия трансформировались в более тяжёлые элементы

Источник: science.sciencemag.org

В избранное